Advertisement

Imaging the Posterior Segment of the Eye using Swept-Source Optical Coherence Tomography in Myopic Glaucoma Eyes: Comparison With Enhanced-Depth Imaging

  • Hae-Young Lopilly Park
    Affiliations
    Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea

    Seoul St. Mary's Hospital, Seoul, South Korea
    Search for articles by this author
  • Hye-Young Shin
    Affiliations
    Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea

    Uijungbu St. Mary's Hospital, Uijungbu, South Korea
    Search for articles by this author
  • Chan Kee Park
    Correspondence
    Inquiries to Chana Kee Park, Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea, 505 Banpo-dong, Seocho-ku, Seoul 137-701, South Korea
    Affiliations
    Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea

    Seoul St. Mary's Hospital, Seoul, South Korea
    Search for articles by this author
Published:November 13, 2013DOI:https://doi.org/10.1016/j.ajo.2013.11.008

      Purpose

      To compare the detection rates of identifying the posterior border of the sclera and lamina cribrosa and measurement reproducibility of scleral and laminar thicknesses using the enhanced depth imaging (EDI) of Heidelberg Spectralis optical coherence tomography (OCT) and swept-source OCT.

      Design

      Cross-sectional design.

      Methods

      Both EDI-OCT and swept-source OCT images were obtained in 32 myopic glaucoma patients. Subfoveal choroidal, subfoveal scleral, and central laminar thicknesses were measured from obtained B-scan images. Each measurement was performed at 3 locations by 2 masked observers. The detection rates and measurement reproducibility were evaluated from selected B-scans.

      Results

      The posterior border of the sclera was visible in 10 eyes (31%) using EDI-OCT. This was improved to be visible in 17 eyes (53%) using swept-source OCT. According to the McNemar χ2 test, the detection rate of the posterior border of the sclera was significantly different between EDI-OCT and swept-source OCT (P = 0.008). The detection rate of the posterior border of the lamina cribrosa was similar for the 2 devices. In highly myopic eyes, the detection rate of the posterior border of the sclera and lamina cribrosa was not statistically different between EDI-OCT and swept-source OCT. Intersystem ICCs was 0.769 (95% CI, 0.714–0.893) for subfoveal scleral thickness and 0.900 (95% CI, 0.887–0.917) for laminar thickness. The mean subfoveal scleral thickness was 464.32 ± 213.24 μm using EDI-OCT and 650.26 ± 222.30 μm using swept-source OCT. There was statistical difference in the measured subfoveal scleral thickness by the 2 devices (P = 0.018).

      Conclusions

      Compared with EDI-OCT, swept-source OCT had an advantage in imaging the posterior sclera. Imaging the lamina cribrosa was similar when using both devices.
      To read this article in full you will need to make a payment

      References

        • Balaratnasingam C.
        • Morgan W.H.
        • Bass L.
        • et al.
        Axonal transport and cytoskeletal changes in the laminar regions after elevated intraocular pressure.
        Invest Ophthalmol Vis Sci. 2007; 48: 3632-3644
        • Quigley H.A.
        • Hohman R.M.
        • Addicks E.M.
        • Massof R.W.
        • Green W.R.
        Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma.
        Am J Ophthalmol. 1983; 95: 673-691
        • Gaasterland D.
        • Tanishima T.
        • Kuwabara T.
        Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping.
        Invest Ophthalmol Vis Sci. 1978; 17: 838-846
        • Minckler D.S.
        • Bunt A.H.
        • Johanson G.W.
        Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey.
        Invest Ophthalmol Vis Sci. 1977; 16: 426-441
        • Quigley H.A.
        • Addicks E.M.
        • Green W.R.
        • Maumenee A.E.
        Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage.
        Arch Ophthalmol. 1981; 99: 635-649
        • Quigley H.A.
        • Green W.R.
        The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes.
        Ophthalmology. 1979; 86: 1803-1830
        • Bellezza A.J.
        • Rintalan C.J.
        • Thompson H.W.
        • et al.
        Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma.
        Invest Ophthalmol Vis Sci. 2003; 44: 623-637
        • Norman R.E.
        • Flanagan J.G.
        • Sigal I.A.
        • et al.
        Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma.
        Exp Eye Res. 2011; 93: 4-12
        • Sigal I.A.
        • Flanagan J.G.
        • Tertinegg I.
        • Ethier C.R.
        Finite element modeling of optic nerve head biomechanics.
        Invest Ophthalmol Vis Sci. 2004; 45: 4378-4387
        • Eilaghi A.
        • Flanagan J.G.
        • Simmons C.A.
        • Ethier C.R.
        Effects of scleral stiffness properties on optic nerve head biomechanics.
        Ann Biomed Eng. 2010; 38: 1586-1592
        • Vurgese S.
        • Panda-Jonas S.
        • Jonas J.B.
        Scleral thickness in human eyes.
        PloS One. 2012; 7: e29692
        • Jonas J.B.
        • Jonas S.B.
        • Jonas R.A.
        • Holbach L.
        • Panda-Jonas S.
        Histology of the parapapillary region in high myopia.
        Am J Ophthalmol. 2011; 152: 1021-1029
        • Jonas J.B.
        • Jonas R.A.
        • Jonas S.B.
        • Panda-Jonas S.
        Lamina cribrosa thickness correlated with peripapillary sclera thickness.
        Acta Ophthalmol. 2012; 90: 248-250
        • Jonas S.B.
        • Jonas J.B.
        Peripapillary sclera thickness in human eyes with glaucoma.
        Acta Ophthalmol. 2011; 89: 659-661
        • Lee E.J.
        • Kim T.W.
        • Weinreb R.N.
        • Suh M.H.
        • Kim H.
        Lamina cribrosa thickness is not correlated with central corneal thickness or axial length in healthy eyes: central corneal thickness, axial length, and lamina cribrosa thickness.
        Graefes Arch Clin Exp Ophthalmol. 2013; 251: 847-854
        • Park H.Y.
        • Jeon S.H.
        • Park C.K.
        Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma.
        Ophthalmology. 2012; 119: 10-20
        • Yamanari M.
        • Lim Y.
        • Makita S.
        • Yasuno Y.
        Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-microm probe.
        Opt Express. 2009; 17: 12385-12396
        • Yasuno Y.
        • Hong Y.
        • Makita S.
        • et al.
        In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography.
        Opt Express. 2007; 15: 6121-6139
        • Ohno-Matsui K.
        • Akiba M.
        • Moriyama M.
        • et al.
        Imaging retrobulbar subarachnoid space around optic nerve by swept-source optical coherence tomography in eyes with pathologic myopia.
        Invest Ophthalmol Vis Sci. 2011; 52: 9644-9650
        • Spaide R.F.
        • Akiba M.
        • Ohno-Matsui K.
        Evaluation of peripapillary intrachoroidal cavitation with swept source and enhanced depth imaging optical coherence tomography.
        Retina. 2012; 32: 1037-1044
        • Ohno-Matsui K.
        • Akiba M.
        • Ishibashi T.
        • Moriyama M.
        Observations of vascular structures within and posterior to sclera in eyes with pathologic myopia by swept-source optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2012; 53: 7290-7298
        • Ikuno Y.
        • Maruko I.
        • Yasuno Y.
        • et al.
        Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2011; 52: 5536-5540
        • Maruko I.
        • Iida T.
        • Sugano Y.
        • Oyamada H.
        • Sekiryu T.
        Morphologic choroidal and scleral changes at the macula in tilted disc syndrome with staphyloma using optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2011; 52: 8763-8768
        • Park H.Y.
        • Park C.K.
        Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma.
        Ophthalmology. 2013; 120: 745-752
        • Fleiss J.L.
        The design and analysis of clinical experiments.
        Wiley, New York, NY1986: 432
        • Coudrillier B.
        • Tian J.
        • Alexander S.
        • et al.
        Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing.
        Invest Ophthalmol Vis Sci. 2012; 53: 1714-1728
        • Sigal I.A.
        • Yang H.
        • Roberts M.D.
        • Burgoyne C.F.
        • Downs J.C.
        IOP-induced lamina cribrosa displacement and scleral canal expansion: an analysis of factor interactions using parameterized eye-specific models.
        Invest Ophthalmol Vis Sci. 2011; 52: 1896-1907
        • Inoue R.
        • Hangai M.
        • Kotera Y.
        • et al.
        Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma.
        Ophthalmology. 2009; 116: 214-222
        • Park S.C.
        • Kiumehr S.
        • Teng C.C.
        • et al.
        Horizontal central ridge of the lamina cribrosa and regional differences in laminar insertion in healthy subjects.
        Invest Ophthalmol Vis Sci. 2012; 53: 1610-1616
        • Lee E.J.
        • Kim T.W.
        • Weinreb R.N.
        • et al.
        Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma.
        Invest Ophthalmol Vis Sci. 2012; 53: 198-204
        • Ellabban A.A.
        • Tsujikawa A.
        • Matsumoto A.
        • et al.
        Three-dimensional tomographic features of dome-shaped macula by swept-source optical coherence tomography.
        Am J Ophthalmol. 2013; 155: 320-328
        • Ohno-Matsui K.
        • Akiba M.
        • Moriyama M.
        • et al.
        Acquired optic nerve and peripapillary pits in pathologic myopia.
        Ophthalmology. 2012; 119: 1685-1692
        • Ohno-Matsui K.
        • Akiba M.
        • Modegi T.
        • et al.
        Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia.
        Invest Ophthalmol Vis Sci. 2012; 53: 6046-6061
        • Spaide R.F.
        • Koizumi H.
        • Pozzoni M.C.
        Enhanced depth imaging spectral-domain optical coherence tomography.
        Am J Ophthalmol. 2008; 146: 496-500
        • Rahman W.
        • Chen F.K.
        • Yeoh J.
        • et al.
        Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2011; 52: 2267-2271
        • Burgoyne C.F.
        • Downs J.C.
        • Bellezza A.J.
        • Suh J.K.
        • Hart R.T.
        The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage.
        Prog Retina Eye Res. 2005; 24: 39-73
        • Lee E.J.
        • Kim T.W.
        • Weinreb R.N.
        Improved reproducibility in measuring the laminar thickness on enhanced depth imaging SD-OCT images using maximum intensity projection.
        Invest Ophthalmol Vis Sci. 2012; 53: 7576-7582
        • Huang D.
        • Swanson E.A.
        • Lin C.P.
        • et al.
        Optical coherence tomography.
        Science. 1991; 254: 1178-1181
        • Hee M.R.
        • Izatt J.A.
        • Swanson E.A.
        • et al.
        Optical coherence tomography of the human retina.
        Arch Ophthalmol. 1995; 113: 325-332
        • Catier A.
        • Tadayoni R.
        • Paques M.
        • et al.
        Characterization of macular edema from various etiologies by optical coherence tomography.
        Am J Ophthalmol. 2005; 140: 200-206
        • Sepulcre J.
        • Murie-Fernandez M.
        • Salinas-Alaman A.
        • et al.
        Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS.
        Neurology. 2007; 68: 1488-1494
        • Grewal D.S.
        • Tanna A.P.
        Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography.
        Curr Opin Ophthalmol. 2013; 24: 150-161