Automated Segmentation Errors When Using Optical Coherence Tomography to Measure Retinal Nerve Fiber Layer Thickness in Glaucoma

Published:November 03, 2016DOI:


      To characterize the error of optical coherence tomography (OCT) measurements of retinal nerve fiber layer (RNFL) thickness when using automated retinal layer segmentation algorithms without manual refinement.


      Cross-sectional study.


      This study was set in a glaucoma clinical practice, and the dataset included 3490 scans from 412 eyes of 213 individuals with a diagnosis of glaucoma or glaucoma suspect. We used spectral domain OCT (Spectralis) to measure RNFL thickness in a 6-degree peripapillary circle, and exported the native “automated segmentation only” results. In addition, we exported the results after “manual refinement” to correct errors in the automated segmentation of the anterior (internal limiting membrane) and the posterior boundary of the RNFL. Our outcome measures included differences in RNFL thickness and glaucoma classification (i.e., normal, borderline, or outside normal limits) between scans with automated segmentation only and scans using manual refinement.


      Automated segmentation only resulted in a thinner global RNFL thickness (1.6 μm thinner, P < .001) when compared to manual refinement. When adjusted by operator, a multivariate model showed increased differences with decreasing RNFL thickness (P < .001), decreasing scan quality (P < .001), and increasing age (P < .03). Manual refinement changed 298 of 3486 (8.5%) of scans to a different global glaucoma classification, wherein 146 of 617 (23.7%) of borderline classifications became normal. Superior and inferior temporal clock hours had the largest differences.


      Automated segmentation without manual refinement resulted in reduced global RNFL thickness and overestimated the classification of glaucoma. Differences increased in eyes with a thinner RNFL thickness, older age, and decreased scan quality. Operators should inspect and manually refine OCT retinal layer segmentation when assessing RNFL thickness in the management of patients with glaucoma.
      To read this article in full you will need to make a payment


        • Miki A.
        • Medeiros F.A.
        • Weinreb R.N.
        • et al.
        Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes.
        Ophthalmology. 2014; 121: 1350-1358
        • Shin H.Y.
        • Park H.Y.
        • Jung Y.
        • Choi J.A.
        • Park C.K.
        Glaucoma diagnostic accuracy of optical coherence tomography parameters in early glaucoma with different types of optic disc damage.
        Ophthalmology. 2014; 121: 1990-1997
        • Kafieh R.
        • Rabbani H.
        • Kermani S.
        A review of algorithms for segmentation of optical coherence tomography from retina.
        J Med Signals Sens. 2013; 3: 45-60
        • Tian J.
        • Varga B.
        • Tatrai E.
        • et al.
        Performance evaluation of automated segmentation software on optical coherence tomography volume data.
        J Biophotonics. 2016; 9: 478-489
        • Liu Y.
        • Simavli H.
        • Que C.J.
        • et al.
        Patient characteristics associated with artifacts in Spectralis optical coherence tomography imaging of the retinal nerve fiber layer in glaucoma.
        Am J Ophthalmol. 2015; 159: 565-576.e562
        • Asrani S.
        • Essaid L.
        • Alder B.D.
        • Santiago-Turla C.
        Artifacts in spectral-domain optical coherence tomography measurements in glaucoma.
        JAMA Ophthalmol. 2014; 132: 396-402
        • Lee S.Y.
        • Kwon H.J.
        • Bae H.W.
        • et al.
        Frequency, type and cause of artifacts in swept-source and Cirrus HD optical coherence tomography in cases of glaucoma and suspected glaucoma.
        Curr Eye Res. 2016; 41: 1-8
        • Alshareef R.A.
        • Dumpala S.
        • Rapole S.
        • et al.
        Prevalence and distribution of segmentation errors in macular ganglion cell analysis of healthy eyes using Cirrus HD-OCT.
        PLoS One. 2016; 11: e0155319
        • Kim K.E.
        • Jeoung J.W.
        • Park K.H.
        • Kim D.M.
        • Kim S.H.
        Diagnostic classification of macular ganglion cell and retinal nerve fiber layer analysis: differentiation of false-positives from glaucoma.
        Ophthalmology. 2015; 122: 502-510
        • Chong G.T.
        • Lee R.K.
        Glaucoma versus red disease: imaging and glaucoma diagnosis.
        Curr Opin Ophthalmol. 2012; 23: 79-88
        • Demirel S.
        • Fortune B.
        • Fan J.
        • et al.
        Predicting progressive glaucomatous optic neuropathy using baseline standard automated perimetry data.
        Invest Ophthalmol Vis Sci. 2009; 50: 674-680
        • Gardiner S.K.
        • Boey P.Y.
        • Yang H.
        • Fortune B.
        • Burgoyne C.F.
        • Demirel S.
        Structural measurements for monitoring change in glaucoma: comparing retinal nerve fiber layer thickness with minimum rim width and area.
        Invest Ophthalmol Vis Sci. 2015; 56: 6886-6891
        • Gardiner S.K.
        • Demirel S.
        • Johnson C.A.
        Perimetric indices as predictors of future glaucomatous functional change.
        Optom Vis Sci. 2011; 88: 56-62
        • Gardiner S.K.
        • Johnson C.A.
        • Demirel S.
        Factors predicting the rate of functional progression in early and suspected glaucoma.
        Invest Ophthalmol Vis Sci. 2012; 53: 3598-3604
      1. Heidelberg Engineering GmbH. Spectralis HRA+OCT user guide software version 5.1. Available at: Accessed November 12, 2016.

        • Gardiner S.K.
        • Demirel S.
        • Reynaud J.
        • Fortune B.
        Changes in retinal nerve fiber layer reflectance intensity as a predictor of functional progression in glaucoma.
        Invest Ophthalmol Vis Sci. 2016; 57: 1221-1227
        • Glynn R.J.
        • Rosner B.
        Accounting for the correlation between fellow eyes in regression analysis.
        Arch Ophthalmol. 1992; 110: 381-387
        • Zeger S.L.
        • Liang K.Y.
        Longitudinal data analysis for discrete and continuous outcomes.
        Biometrics. 1986; 42: 121-130
        • Barkana Y.
        • Burgansky-Eliash Z.
        • Gerber Y.
        • et al.
        Inter-device variability of the Stratus optical coherence tomography.
        Am J Ophthalmol. 2009; 147: 260-266
        • Sung K.R.
        • Wollstein G.
        • Schuman J.S.
        • et al.
        Scan quality effect on glaucoma discrimination by glaucoma imaging devices.
        Br J Ophthalmol. 2009; 93: 1580-1584
        • Huang J.
        • Liu X.
        • Wu Z.
        • Sadda S.
        Image quality affects macular and retinal nerve fiber layer thickness measurements on fourier-domain optical coherence tomography.
        Ophthalmic Surg Lasers Imaging. 2011; 42: 216-221
        • Wu H.
        • de Boer J.F.
        • Chen T.C.
        Reproducibility of retinal nerve fiber layer thickness measurements using spectral domain optical coherence tomography.
        J Glaucoma. 2011; 20: 470-476
        • Hwang Y.H.
        • Kim M.K.
        • Kim D.W.
        Segmentation Errors in Macular Ganglion Cell Analysis as Determined by Optical Coherence Tomography.
        Ophthalmology. 2016; 123: 950-958
        • Vermeer K.A.
        • van der Schoot J.
        • Lemij H.G.
        • de Boer J.F.
        RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment.
        Invest Ophthalmol Vis Sci. 2012; 53: 6102-6108
        • van der Schoot J.
        • Vermeer K.A.
        • de Boer J.F.
        • Lemij H.G.
        The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images.
        Invest Ophthalmol Vis Sci. 2012; 53: 2424-2430
        • Ye C.
        • Yu M.
        • Leung C.K.
        Impact of segmentation errors and retinal blood vessels on retinal nerve fibre layer measurements using spectral-domain optical coherence tomography.
        Acta Ophthalmol. 2016; 94: e211-e219
        • Balasubramanian M.
        • Bowd C.
        • Vizzeri G.
        • Weinreb R.N.
        • Zangwill L.M.
        Effect of image quality on tissue thickness measurements obtained with spectral domain-optical coherence tomography.
        Opt Express. 2009; 17: 4019-4036
        • Huang Y.
        • Gangaputra S.
        • Lee K.E.
        • et al.
        Signal quality assessment of retinal optical coherence tomography images.
        Invest Ophthalmol Vis Sci. 2012; 53: 2133-2141
        • Rao H.L.
        • Addepalli U.K.
        • Yadav R.K.
        • Senthil S.
        • Choudhari N.S.
        • Garudadri C.S.
        Effect of scan quality on diagnostic accuracy of spectral-domain optical coherence tomography in glaucoma.
        Am J Ophthalmol. 2014; 157: 719-727.e711
        • Budenz D.L.
        • Anderson D.R.
        • Varma R.
        • et al.
        Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT.
        Ophthalmology. 2007; 114: 1046-1052
        • Fortune B.
        • Reynaud J.
        • Cull G.
        • Burgoyne C.F.
        • Wang L.
        The effect of age on optic nerve axon counts, SDOCT scan quality, and peripapillary retinal nerve fiber layer thickness measurements in rhesus monkeys.
        Transl Vis Sci Technol. 2014; 3: 2