Ophthalmologic Features of Progeria

  • Iason S. Mantagos
    Inquiries to Iason S. Mantagos, Boston Children's Hospital Ophthalmology Department, 300 Longwood Ave, Boston, MA 02115
    Department of Ophthalmology, Boston Children's Hospital – Harvard Medical School, Boston, Massachusetts
    Search for articles by this author
  • Monica E. Kleinman
    Department of Anesthesia, Boston Children's Hospital – Harvard Medical School, Boston, Massachusetts
    Search for articles by this author
  • Mark W. Kieran
    Division of Hematology/Oncology, Boston Children's Hospital – Harvard Medical School, Boston, Massachusetts

    Department of Pediatric Oncology, Dana-Farber Cancer Institute – Harvard Medical School, Boston, Massachusetts
    Search for articles by this author
  • Leslie B. Gordon
    Department of Anesthesia, Boston Children's Hospital – Harvard Medical School, Boston, Massachusetts

    Department of Pediatrics, Hasbro Children's Hospital – Warren Alpert Medical School of Brown University, Providence, Rhode Island
    Search for articles by this author


      To establish the natural history of ophthalmic characteristics in Progeria patients and to determine incidence of ocular manifestations.


      Retrospective case series of patients with Progeria who were seen between 2007 and 2016.


      Setting: Tertiary-care academic center. Patient Population: Fourteen patients (28 eyes) with Hutchinson-Gilford Progeria syndrome were included for statistical analysis from a total of 84 patients who have been enrolled in clinical trials for Progeria at Boston Children's Hospital. Clinical treatment trial patients who were not seen at the Department of Ophthalmology at our hospital, but for whom we had detailed clinical ophthalmologic records, were also included. This essentially represents an estimated 20% of the world's known patients with Progeria. Interventions or Observation Procedures: Complete ophthalmic examination. Main Outcome Measures: Visual acuity, stereoacuity, refraction, clinical findings of slit-lamp and dilated fundus examinations.


      Ophthalmic manifestations noted were hyperopia and signs of ocular surface disease owing to nocturnal lagophthalmos and exposure keratopathy. Additional ophthalmic manifestations included reduced brow hair, madarosis, and reduced accommodation. Most patients had relatively good acuity; however, advanced ophthalmic disease was associated with reduced acuity.


      Children with Progeria are at risk for serious ophthalmic complications owing to ocular surface disease. Children with Progeria should have an ophthalmic evaluation at the time of diagnosis and at least yearly after that. Aggressive ocular surface lubrication is recommended, including the use of tape tarsorrhaphy at night.
      To read this article in full you will need to make a payment


        • Gordon L.B.
        • Brown W.T.
        • Collins F.S.
        Hutchinson-Gilford progeria syndrome.
        in: Pagon R.A. Adam M.P. Ardinger H.H. GeneReviews® [Internet]. University of Washington, Seattle, WA2003 Dec 12 ([Updated 2015 Jan 8]. Available at) (Accessed December 1, 2016)
        • Merideth M.A.
        • Gordon L.B.
        • Clauss S.
        • et al.
        Phenotype and course of Hutchinson-Gildford progeria syndrome.
        N Engl J Med. 2008; 358: 592-604
        • Hutchinson J.
        Congenital absence of hair and mammary glands with atrophic condition of the skin and its appendages, in a boy whose mother had been almost wholly bald from alopecia areata from the age of six.
        Med Chir Trans. 1886; 69: 473-477
        • Gilford H.
        Ateleiosis and progeria: continuous youth and premature old age.
        Br Med J. 1904; 2: 914-918
        • Gordon L.B.
        • Massaro J.
        • D'Agostino Sr., R.B.
        • et al.
        • Progeria Clinical Trials Collaborative
        Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome.
        Circulation. 2014; 130: 27-34
        • Hennekam R.C.
        Hutchinson-Gilford progeria syndrome: review of the phenotype.
        Am J Med Genet A. 2006; 140: 2603-2624
        • Gordon A.S.
        • Gordon L.B.
        The Progeria Research Foundation: its remarkable journey from obscurity to treatment.
        Expert Opin Orphan Drugs. 2014; 2: 1187-1195
        • Gordon L.B.
        PRF by the numbers. Progeria Research Foundation 2013.
        (Available at) (Accessed December 1, 2016)
        • Eriksson M.
        • Brown W.T.
        • Gordon L.B.
        • et al.
        Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome.
        Nature. 2003; 423: 293-298
        • De Sandre-Giovannoli A.
        • Bernard R.
        • Cau P.
        • et al.
        Lamin A truncation in Hutchinson-Gilford progeria.
        Science. 2003; 300: 2055
        • Vidak S.
        • Foisner R.
        Molecular insights into the premature aging disease progeria.
        Histochem Cell Biol. 2016; 145: 401-417
        • Ullrich N.J.
        • Gordon L.B.
        Hutchinson-Gilford progeria syndrome.
        Handb Clin Neurol. 2015; 132: 249-264
        • Gerhard-Herman M.
        • Smoot L.B.
        • Wake N.
        • et al.
        Mechanisms of premature vascular aging in children with Hutchinson-Gilford progeria syndrome.
        Hypertension. 2012; 59: 92-97
        • Gordon L.B.
        • Kleinman M.E.
        • Miller D.T.
        • et al.
        Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome.
        Proc Natl Acad Sci U S A. 2012; 109: 16666-16671
        • Gordon L.B.
        • Kleinman M.E.
        • Massaro J.M.
        • et al.
        Clinical trial of protein farnesylation inhibitors lonafarnib, pravastatin and zoledronic acid in children with Hutchinson-Gilford progeria syndrome.
        Circulation. 2016; 134: 114-125
        • Moulson C.L.
        • Fong L.G.
        • Gardner J.M.
        • et al.
        Increased progerin expression associated with unusual LMNA mutations causes severe progeroid syndromes.
        Hum Mutat. 2007; 28: 882-889
        • Townsend W.M.
        in: Kaufman H.E. Barron B.A. McDonald M.B. Waltman S.R. The Cornea. Churchill Livingstone, New York1988
        • Yadav A.R.
        • Bhattad K.R.
        • Sen P.A.
        • Jain E.B.
        • Sen A.
        • Jain B.K.
        Outcome of different techniques of pterygium excision with conjunctival autografting in pediatric population: our experience in central India.
        Indian J Ophthalmol. 2015; 63: 491-495
        • Barkley M.R.
        • O'Hagan S.B.
        Ophthalmic manifestations in a case of Wiedemann-Rautenstrauch syndrome.
        J AAPOS. 2015; 19: 559-561
        • Chandravanshi S.L.
        • Rawat A.K.
        • Dwivedi P.C.
        • Choudhary P.
        Ocular manifestations in the Hutchinson-Gilford progeria syndrome.
        Indian J Ophthalmol. 2011; 59: 509-512
        • Yazc B.
        • Toka F.
        • Çömez A.T.
        Anatomical characteristics and surgical treatment of bilateral congenital upper eyelid entropion in an infant with neonatal progeroid syndrome.
        Ophthal Plast Reconstr Surg. 2014; 30: e164-e166
        • Di Girolamo N.
        Stem cells of the human cornea.
        Br Med Bull. 2011; 100: 191-207
        • Ahmad S.
        • Figueiredo F.
        • Lako M.
        Corneal epithelial stem cells: characterization, culture and transplantation.
        Regen Med. 2006; 1: 29-44
        • Dua H.S.
        • Azuara-Blanco A.
        Limbal stem cells of the corneal epithelium.
        Surv Ophthalmol. 2000; 44: 415-425
        • Ramos T.
        • Scott D.
        • Ahmad S.
        An update on ocular surface epithelial stem cells: cornea and conjunctiva.
        Stem Cells Int. 2015; 2015: 601731
        • Espada J.
        • Varela I.
        • Flores I.
        • et al.
        Nuclear envelope defects cause stem cell dysfunction in premature-aging mice.
        J Cell Biol. 2008; 181: 27-35
        • Rosengardten Y.
        • McKenna T.
        • Grochová D.
        • Eriksson M.
        Stem cell depletion in Hutchinson-Gilford progeria syndrome.
        Aging Cell. 2011; 10: 1011-1020
        • Wenzel V.
        • Roedl D.
        • Gabriel D.
        • et al.
        Naïve adult stem cells from patients with Hutchinson-Gilford progeria syndrome express low levels of progerin in vivo.
        Biol Open. 2012; 1: 516-526
        • Blanpain C.
        • Fuchs E.
        Epidermal stem cells of the skin.
        Annu Rev Cell Dev Biol. 2006; 22: 339-373
        • Bradley J.C.
        • Yang W.
        • Bradley R.H.
        • Reid T.W.
        • Schwab I.R.
        The science of pterygia.
        Br J Ophthalmol. 2010; 94: 815-820
        • Wang I.J.
        • Lai W.T.
        • Liou S.W.
        • et al.
        Impression cytology of pterygium.
        J Ocul Pharmacol Ther. 2000; 16: 519-528
        • Kau H.C.
        • Tsai C.C.
        • Lee C.F.
        • et al.
        Increased oxidative DNA damage, 8-hydroxydeoxyguanosine, in human pterygium.
        Eye (Lond). 2006; 20: 826-831
        • Tsai Y.Y.
        • Cheng Y.W.
        • Lee H.
        • et al.
        Oxidative DNA damage in pterygium.
        Mol Vis. 2005; 11: 71-75
        • Musich P.R.
        • Zou Y.
        Genomic instability and DNA damage responses in progeria arising from defective maturation of prelamin A.
        Aging (Albany NY). 2009; 1: 28-37
        • Benson E.K.
        • Lee S.W.
        • Aaronson S.A.
        Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence.
        J Cell Sci. 2010; 123: 2605-2612
        • Tan D.T.H.
        • Lim A.S.M.
        • Goh H.S.
        • Smith D.R.
        Abnormal expression of the p53 tumor suppressor gene in the conjunctiva of patients with pterygium.
        Am J Ophthalmol. 1997; 123: 404-405
        • Dushku N.
        • Hatcher S.L.S.
        • Albert D.M.
        • et al.
        p53 expression and relation to human papillomavirus infection in pingueculae, pterygia, and limbal tumors.
        Arch Ophthalmol. 1999; 117: 1593-1599
        • Weinstein O.
        • Rosenthal G.
        • Zirkin H.
        • et al.
        Overexpression of p53 tumor suppressor gene in pterygia.
        Eye (Lond). 2002; 16: 619-621
        • Varela I.
        • Cadiñanos J.
        • Pendás A.M.
        • et al.
        Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation.
        Nature. 2005; 437: 564-568
        • Kria L.
        • Ohira A.
        • Amemiya T.
        Immunohistochemical localization of basic fibroblast growth factor, platelet derived growth factor, transforming growth factor-beta and tumor necrosis factor-alpha in the pterygium.
        Acta Histochem. 1996; 98: 195-201
        • Kria L.
        • Ohira A.
        • Amemiya T.
        Growth factors in cultured pterygium fibroblasts: immunohistochemical and ELISA analysis.
        Graefes Arch Clin Exp Ophthalmol. 1998; 236: 702-708
        • Di Girolamo N.
        • Kumar R.K.
        • Coroneo M.T.
        • Wakefield D.
        UVB-mediated induction of interleukin-6 and -8 in pterygia and cultured human pterygium epithelial cells.
        Invest Ophthalmol Vis Sci. 2002; 43: 3430-3437
        • Di Girolamo N.
        • Chui J.
        • Coroneo M.T.
        • Wakefield D.
        Pathogenesis of pterygia: role of cytokines, growth factors, and matrix metalloproteinases.
        Prog Retin Eye Res. 2004; 23: 195-228
        • Chiang C.C.
        • Cheng Y.W.
        • Lin C.L.
        • et al.
        Cyclooxygenase 2 expression in pterygium.
        Mol Vis. 2007; 13: 635-638
        • Tong L.
        • Li J.
        • Chew J.
        • Tan D.
        • Beuerman R.
        Phospholipase D in the human ocular surface and in pterygium.
        Cornea. 2008; 27: 693-698
        • Osorio F.G.
        • Bárcena C.
        • Soria-Valles C.
        • et al.
        Nuclear lamina defects cause ATM-dependent NF-κB activation and link accelerated aging to a systemic inflammatory response.
        Genes Dev. 2012; 26: 2311-2324
        • Kulp M.T.
        • Mitchell G.L.
        Randot stereoacuity testing in young children.
        J Pediatr Ophthalmol Strabismus. 2005; 42: 360-364
        • Birch E.
        • Williams C.
        • Drover J.
        • et al.
        Randot® preschool stereoacuity test: normative data and validity.
        J AAPOS. 2008; 12: 23-26
        • Tilli C.M.
        • Ramaekers F.C.
        • Broers J.L.
        • et al.
        Lamin expression in normal human skin actinic keratosis squamous cell carcinoma and basal cell carcinoma.
        Br J Dermatol. 2003; 148: 102-109
        • McClintock D.D.
        • Ratner D.
        • Lokuge M.
        • et al.
        The mutant form of lamin A that causes Hutchinson–Gilford progeria is a biomarker of cellular aging in human skin.
        PLoS One. 2007; 2: e1269
        • Driscoll M.
        • Albanese J.
        • Xiong Z.
        • et al.
        Automated image analysis of nuclear shape: what can we learn from a prematurely aged cell?.
        Aging (Albany NY). 2012; 4: 119-132
        • Goldman R.D.
        • Shumaker D.K.
        • Erdos M.R.
        • et al.
        Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome.
        Proc Natl Acad Sci U S A. 2004; 101: 8963-8968
        • Kuwabara T.
        • Imaizumi M.
        Denucleation process of the lens.
        Invest Ophthalmol Vis Sci. 1974; 13: 973-981
        • Sadikov T.
        • Simon A.J.
        • Avraham-Lubin B.C.
        • Dratviman-Storobinsky O.
        • Cohen Y.
        • Goldenberg-Cohen N.
        C1824T mutation in the LMNA gene has no association with senile cataract.
        Neurobiol Aging. 2012; 33: 1487.e15-1487.e19
        • Sadler T.W.
        Chapter 18: Central nervous system.
        in: Sadler T.W. Langman's Medical Embryology. Lippincott Williams & Wilkins, Baltimore, MD2012: 287-320
        • Sadler T.W.
        Chapter 20: Eye.
        in: Sadler T.W. Langman's Medical Embryology. Lippincott Williams & Wilkins, Baltimore, MD2012: 329-338
        • Jung H.J.
        • Coffinier C.
        • Choe Y.
        • et al.
        Regulation of prelamin A but not lamin C by miR-9, a brain- specific microRNA.
        Proc Natl Acad Sci U S A. 2012; 109: E423-E431
        • Nissan X.
        • Blondel S.
        • Navarro C.
        • et al.
        Unique preservation of neural cells in Hutchinson-Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA.
        Cell Rep. 2012; 2: 1-9
        • La Torre A.
        • Georgi S.
        • Reh T.A.
        Conserved microRNA pathway regulates developmental timing of retinal neurogenesis.
        Proc Natl Acad Sci U S A. 2013; 110: E2362-E2370
        • Kutty R.K.
        • Samuel W.
        • Jaworski C.
        • et al.
        MicroRNA expression in human retinal pigmented epithelial (APRE-19) cells: increased expression of microRNA-9 by N-(4-hydroxyphenyl)retinamide.
        Mol Vis. 2010; 16: 1475-1486
        • Xu S.
        • Witmer P.D.
        • Lumayag S.
        • Kovacs B.
        • Valle D.
        MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster.
        J Biol Chem. 2007; 282: 25053-25066
        • Progeria Research Foundation
        Patient care and handbook.
        (Available at) (Accessed December 1, 2016)
        • Nguyen N.H.
        • Mayhew J.F.
        Anaesthesia for a child with progeria.
        Paediatr Anaesth. 2001; 11: 370-371
        • Liessmann C.D.
        Anaesthesia in a child with Hutchinson-Gilford progeria.
        Paediatr Anaesth. 2001; 11: 611-614