Advertisement

Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field

Published:September 27, 2017DOI:https://doi.org/10.1016/j.ajo.2017.09.020

      Purpose

      To compare longitudinal glaucoma progression detection using optical coherence tomography (OCT) and visual field (VF).

      Design

      Validity assessment.

      Methods

      We analyzed subjects with more than 4 semi-annual follow-up visits (every 6 months) in the multicenter Advanced Imaging for Glaucoma Study. Fourier-domain optical coherence tomography (OCT) was used to map the thickness of the peripapillary retinal nerve fiber layer (NFL) and ganglion cell complex (GCC). OCT-based progression detection was defined as a significant negative trend for either NFL or GCC. VF progression was reached if either the event or trend analysis reached significance.

      Results

      The analysis included 356 glaucoma suspect/preperimetric glaucoma (GS/PPG) eyes and 153 perimetric glaucoma (PG) eyes. Follow-up length was 54.1 ± 16.2 months for GS/PPG eyes and 56.7 ± 16.0 for PG eyes. Progression was detected in 62.1% of PG eyes and 59.8% of GS/PPG eyes by OCT, significantly (P < .001) more than the detection rate of 41.8% and 27.3% by VF. In severity-stratified analysis of PG eyes, OCT had significantly higher detection rate than VF in mild PG (63.1% vs. 38.7%, P < .001), but not in moderate and advanced PG. The rate of NFL thinning slowed dramatically in advanced PG, but GCC thinning rate remained relatively steady and allowed good progression detection even in advanced disease. The Kaplan-Meier time-to-event analyses showed that OCT detected progression earlier than VF in both PG and GS/PPG groups.

      Conclusions

      OCT is more sensitive than VF for the detection of progression in early glaucoma. While the utility of NFL declines in advanced glaucoma, GCC remains a sensitive progression detector from early to advanced stages.
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to American Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Quigley H.A.
        • Broman A.T.
        The number of people with glaucoma worldwide in 2010 and 2020.
        Br J Ophthalmol. 2006; 90: 262-267
        • Chauhan B.C.
        • Garway-Heath D.F.
        • Goni F.J.
        • et al.
        Practical recommendations for measuring rates of visual field change in glaucoma.
        Br J Ophthalmol. 2008; 92: 569-573
        • Jampel H.D.
        • Friedman D.
        • Quigley H.
        • et al.
        Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients.
        Am J Ophthalmol. 2009; 147: 39-44.e31
        • Bussel I.I.
        • Wollstein G.
        • Schuman J.S.
        OCT for glaucoma diagnosis, screening and detection of glaucoma progression.
        Br J Ophthalmol. 2014; 98: ii15-ii19
        • Mwanza J.C.
        • Kim H.Y.
        • Budenz D.L.
        • et al.
        Residual and dynamic range of retinal nerve fiber layer thickness in glaucoma: comparison of three OCT platforms.
        Invest Ophthalmol Vis Sci. 2015; 56: 6344-6351
        • Hood D.C.
        • Kardon R.H.
        A framework for comparing structural and functional measures of glaucomatous damage.
        Prog Retin Eye Res. 2007; 26: 688-710
        • Leske M.C.
        • Heijl A.
        • Hyman L.
        • Bengtsson B.
        Early Manifest Glaucoma Trial: design and baseline data.
        Ophthalmology. 1999; 106: 2144-2153
        • Artes P.H.
        • O'Leary N.
        • Nicolela M.T.
        • Chauhan B.C.
        • Crabb D.P.
        Visual field progression in glaucoma: what is the specificity of the Guided Progression Analysis?.
        Ophthalmology. 2014; 121: 2023-2027
        • Artes P.H.
        • Nicolela M.T.
        • LeBlanc R.P.
        • Chauhan B.C.
        Visual field progression in glaucoma: total versus pattern deviation analyses.
        Invest Ophthalmol Vis Sci. 2005; 46: 4600-4606
        • Bengtsson B.
        • Heijl A.
        A visual field index for calculation of glaucoma rate of progression.
        Am J Ophthalmol. 2008; 145: 343-353
        • Aptel F.
        • Aryal-Charles N.
        • Giraud J.M.
        • et al.
        Progression of visual field in patients with primary open-angle glaucoma - ProgF study 1.
        Acta Ophthalmol. 2015; 93: e615-e620
        • Banegas S.A.
        • Anton A.
        • Morilla A.
        • et al.
        Evaluation of the retinal nerve fiber layer thickness, the mean deviation, and the visual field index in progressive glaucoma.
        J Glaucoma. 2016; 25: e229-e235
        • Sung K.R.
        • Sun J.H.
        • Na J.H.
        • Lee J.Y.
        • Lee Y.
        Progression detection capability of macular thickness in advanced glaucomatous eyes.
        Ophthalmology. 2012; 119: 308-313
        • Anton A.
        • Pazos M.
        • Martin B.
        • et al.
        Glaucoma progression detection: agreement, sensitivity, and specificity of expert visual field evaluation, event analysis, and trend analysis.
        Eur J Ophthalmol. 2013; 23: 187-195
        • Artes P.H.
        • O'Leary N.
        • Hutchison D.M.
        • et al.
        Properties of the statpac visual field index.
        Invest Ophthalmol Vis Sci. 2011; 52: 4030-4038
        • Wall M.
        • Doyle C.K.
        • Zamba K.D.
        • Artes P.
        • Johnson C.A.
        The repeatability of mean defect with size III and size V standard automated perimetry.
        Invest Ophthalmol Vis Sci. 2013; 54: 1345-1351
        • Mwanza J.C.
        • Chang R.T.
        • Budenz D.L.
        • et al.
        Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with Cirrus HD-OCT in glaucomatous eyes.
        Invest Ophthalmol Vis Sci. 2010; 51: 5724-5730
        • Garvin M.K.
        • Lee K.
        • Burns T.L.
        • Abramoff M.D.
        • Sonka M.
        • Kwon Y.H.
        Reproducibility of SD-OCT-based ganglion cell-layer thickness in glaucoma using two different segmentation algorithms.
        Invest Ophthalmol Vis Sci. 2013; 54: 6998-7004
        • Huang D.
        • Swanson E.A.
        • Lin C.P.
        • et al.
        Optical coherence tomography.
        Science. 1991; 254: 1178-1181
        • Tan O.
        • Li G.
        • Lu A.T.
        • Varma R.
        • Huang D.
        Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis.
        Ophthalmology. 2008; 115: 949-956
        • Tan O.
        • Chopra V.
        • Lu A.T.
        • et al.
        Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography.
        Ophthalmology. 2009; 116: 2305-2314.e2301–e2302
        • Bowd C.
        • Zangwill L.M.
        • Berry C.C.
        • et al.
        Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function.
        Invest Ophthalmol Vis Sci. 2001; 42: 1993-2003
        • Zangwill L.M.
        • Bowd C.
        • Berry C.C.
        • et al.
        Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph.
        Arch Ophthalmol. 2001; 119: 985-993
        • Loewen N.A.
        • Zhang X.
        • Tan O.
        • et al.
        Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography.
        Br J Ophthalmol. 2015; 99: 1224-1229
        • Mwanza J.C.
        • Oakley J.D.
        • Budenz D.L.
        • Anderson D.R.
        Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes.
        Ophthalmology. 2011; 118: 241-248.e241
        • Chang R.T.
        • Knight O.J.
        • Feuer W.J.
        • Budenz D.L.
        Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma.
        Ophthalmology. 2009; 116: 2294-2299
        • Medeiros F.A.
        • Zangwill L.M.
        • Bowd C.
        • Vessani R.M.
        • Susanna Jr., R.
        • Weinreb R.N.
        Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography.
        Am J Ophthalmol. 2005; 139: 44-55
        • Schuman J.S.
        • Hee M.R.
        • Arya A.V.
        • et al.
        Optical coherence tomography: a new tool for glaucoma diagnosis.
        Curr Opin Ophthalmol. 1995; 6: 89-95
        • Hood D.C.
        • Raza A.S.
        • Kay K.Y.
        • et al.
        A comparison of retinal nerve fiber layer (RNFL) thickness obtained with frequency and time domain optical coherence tomography (OCT).
        Opt Express. 2009; 17: 3997-4003
        • Huang J.Y.
        • Pekmezci M.
        • Mesiwala N.
        • Kao A.
        • Lin S.
        Diagnostic power of optic disc morphology, peripapillary retinal nerve fiber layer thickness, and macular inner retinal layer thickness in glaucoma diagnosis with fourier-domain optical coherence tomography.
        J Glaucoma. 2011; 20: 87-94
        • Zhang X.
        • Loewen N.
        • Tan O.
        • et al.
        Predicting development of glaucomatous visual field conversion using baseline Fourier-domain optical coherence tomography.
        Am J Ophthalmol. 2016; 163: 29-37
        • Sehi M.
        • Bhardwaj N.
        • Chung Y.S.
        • Greenfield D.S.
        Evaluation of baseline structural factors for predicting glaucomatous visual-field progression using optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy.
        Eye (Lond). 2012; 26: 1527-1535
        • Zhang X.
        • Dastiridou A.
        • Francis B.A.
        • et al.
        Baseline Fourier-domain optical coherence tomography structural risk factors for visual field progression in the Advanced Imaging for Glaucoma Study.
        Am J Ophthalmol. 2016; 172: 94-103
        • Sommer A.
        • Katz J.
        • Quigley H.A.
        • et al.
        Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss.
        Arch Ophthalmol. 1991; 109: 77-83
        • Wollstein G.
        • Schuman J.S.
        • Price L.L.
        • et al.
        Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma.
        Arch Ophthalmol. 2005; 123: 464-470
        • Kuang T.M.
        • Zhang C.
        • Zangwill L.M.
        • Weinreb R.N.
        • Medeiros F.A.
        Estimating lead time gained by optical coherence tomography in detecting glaucoma before development of visual field defects.
        Ophthalmology. 2015; 122: 2002-2009
        • Abe R.Y.
        • Diniz-Filho A.
        • Zangwill L.M.
        • et al.
        The relative odds of progressing by structural and functional tests in glaucoma.
        Invest Ophthalmol Vis Sci. 2016; 57: OCT421-OCT428
        • Le P.V.
        • Zhang X.
        • Francis B.A.
        • et al.
        Advanced imaging for glaucoma study: design, baseline characteristics, and inter-site comparison.
        Am J Ophthalmol. 2015; 159: 393-403.e392
        • McNaught A.I.
        • Crabb D.P.
        • Fitzke F.W.
        • Hitchings R.A.
        Visual field progression: comparison of Humphrey Statpac2 and pointwise linear regression analysis.
        Graefes Arch Clin Exp Ophthalmol. 1996; 234: 411-418
        • Hodapp E.
        • Parrish R.I.
        • Anderson D.
        Clinical Decisions in Glaucoma.
        The CV Mosby Co, St Louis, MO1993: 52-61
        • Zhang X.
        • Iverson S.M.
        • Tan O.
        • Huang D.
        Effect of signal intensity on measurement of ganglion cell complex and retinal nerve fiber layer scans in fourier-domain optical coherence tomography.
        Transl Vis Sci Technol. 2015; 4: 7
        • Zhang X.
        • Francis B.A.
        • Dastiridou A.
        • et al.
        Longitudinal and cross-sectional analyses of age effects on retinal nerve fiber layer and ganglion cell complex thickness by Fourier-domain OCT.
        Transl Vis Sci Technol. 2016; 5: 1
        • O'Leary N.
        • Chauhan B.C.
        • Artes P.H.
        Visual field progression in glaucoma: estimating the overall significance of deterioration with permutation analyses of pointwise linear regression (PoPLR).
        Invest Ophthalmol Vis Sci. 2012; 53: 6776-6784
        • Redmond T.
        • O'Leary N.
        • Hutchison D.M.
        • Nicolela M.T.
        • Artes P.H.
        • Chauhan B.C.
        Visual field progression with frequency-doubling matrix perimetry and standard automated perimetry in patients with glaucoma and in healthy controls.
        JAMA Ophthalmol. 2013; 131: 1565-1572
        • Liang K.-Y.
        • Zeger S.L.
        Longitudinal data analysis using generalized linear models.
        Biometrika. 1986; 73: 13-22
        • Ohnell H.
        • Heijl A.
        • Brenner L.
        • Anderson H.
        • Bengtsson B.
        Structural and functional progression in the Early Manifest Glaucoma Trial.
        Ophthalmology. 2016; 123: 1173-1180
        • Medeiros F.A.
        • Zangwill L.M.
        • Bowd C.
        • Mansouri K.
        • Weinreb R.N.
        The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change.
        Invest Ophthalmol Vis Sci. 2012; 53: 6939-6946
        • Mwanza J.C.
        • Budenz D.L.
        • Warren J.L.
        • et al.
        Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma.
        Br J Ophthalmol. 2015; 99: 732-737
        • Belghith A.
        • Medeiros F.A.
        • Bowd C.
        • et al.
        Structural change can be detected in advanced-glaucoma eyes.
        Invest Ophthalmol Vis Sci. 2016; 57: OCT511-OCT518
        • Saunders L.J.
        • Russell R.A.
        • Crabb D.P.
        Measurement precision in a series of visual fields acquired by the standard and fast versions of the Swedish interactive thresholding algorithm: analysis of large-scale data from clinics.
        JAMA Ophthalmol. 2015; 133: 74-80
        • Miki A.
        • Medeiros F.A.
        • Weinreb R.N.
        • et al.
        Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes.
        Ophthalmology. 2014; 121: 1350-1358
        • Yu M.
        • Lin C.
        • Weinreb R.N.
        • Lai G.
        • Chiu V.
        • Leung C.K.
        Risk of visual field progression in glaucoma patients with progressive retinal nerve fiber layer thinning: a 5-year prospective study.
        Ophthalmology. 2016; 123: 1201-1210
        • Vizzeri G.
        • Bowd C.
        • Weinreb R.N.
        • et al.
        Determinants of agreement between the confocal scanning laser tomograph and standardized assessment of glaucomatous progression.
        Ophthalmology. 2010; 117: 1953-1959
        • Medeiros F.A.
        • Weinreb R.N.
        • Moore G.
        • Liebmann J.M.
        • Girkin C.A.
        • Zangwill L.M.
        Integrating event- and trend-based analyses to improve detection of glaucomatous visual field progression.
        Ophthalmology. 2012; 119: 458-467
        • Rao H.L.
        • Begum V.U.
        • Khadka D.
        • Mandal A.K.
        • Senthil S.
        • Garudadri C.S.
        Comparing glaucoma progression on 24-2 and 10-2 visual field examinations.
        PLoS One. 2015; 10: e0127233
        • Wu Z.
        • Saunders L.J.
        • Daga F.B.
        • Diniz-Filho A.
        • Medeiros F.A.
        Frequency of testing to detect visual field progression derived using a longitudinal cohort of glaucoma patients.
        Ophthalmology. 2017; 124: 786-792