Advertisement

Novel Parameters to Assess the Severity of Corneal Neovascularization Using Anterior Segment Optical Coherence Tomography Angiography

  • William W. Binotti
    Affiliations
    Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA

    Tufts Medical Center, Tufts University School of Medicine, and Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
    Search for articles by this author
  • N. Dilruba Koseoglu
    Affiliations
    Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA

    Tufts Medical Center, Tufts University School of Medicine, and Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
    Search for articles by this author
  • Ricardo M. Nosé
    Affiliations
    Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA

    Tufts Medical Center, Tufts University School of Medicine, and Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
    Search for articles by this author
  • Kenneth R. Kenyon
    Affiliations
    Tufts Medical Center, Tufts University School of Medicine, and Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
    Search for articles by this author
  • Pedram Hamrah
    Correspondence
    Inquiries to Pedram Hamrah, New England Eye Center, Tufts Medical Center, Box 450, 800 Washington St., Boston, MA 02111, USA
    Affiliations
    Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA

    Tufts Medical Center, Tufts University School of Medicine, and Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
    Search for articles by this author
Published:August 17, 2020DOI:https://doi.org/10.1016/j.ajo.2020.08.023

      Highlights

      • Novel AS-OCTA parameters show good correlations with clinical CoNV severity.
      • Severe CoNV showed greater CoNV posterior limit, thickness, depth, area, and volume.
      • CoNV depth and volume correlate strongly with visual acuity.
      • AS-OCTA is a promising noninvasive tool to assess CoNV severity.

      Purpose

      Assessment of anterior segment–optical coherence tomography angiography (AS-OCTA) to determine severity of corneal neovascularization (CoNV).

      Design

      Retrospective, cross-sectional, single-center study.

      Methods

      Patients of various CoNV etiologies were selected and classified into mild, moderate, and severe. Their AS-OCTA images were measured for CoNV anterior limit, CoNV posterior limit, CoNV thickness, CoNV depth%, CoNV vessel density, CoNV area, and CoNV volume. Further, AS-OCTA parameters were correlated to clinical parameters, such as classification, a numerical severity scale, vascular clock hours, and best-corrected visual acuity (BCVA).

      Results

      A total of 19 mild, 10 moderate, and 6 severe CoNV eyes were included with no significant age-gender differences. CoNV depth% and volume increased from mild to moderate (9.3 ± 1.1% to 17.7 ± 3.3%, P = .030, and 0.2 ± 0.1 mm3 to 1.0 ± 0.3 mm3, P = .025, respectively) and from moderate to severe CoNV (44.6 ± 5.3%, P < .001, and 2.0 ± 0.3 mm3, P = .014, respectively). CoNV area and posterior limit increased from mild to moderate (1.7 ± 0.3 mm2 to 4.6 ± 0.7 mm2, P = .001, and 217.7 ± 16.8 μm to 349.1 ± 54.9 μm, P = .048, respectively), not from moderate to severe (P = .999 and P = .403, respectively). CoNV thickness increased from moderate to severe (218.2 ± 46.6 μm to 340.2 ± 8.7 μm, P = .020), but not from mild to moderate. CoNV area and volume showed good correlations to CoNV staging (r = 0.703 and r = 0.771, respectively; P < .001) and severity scale (r = 0.794 and r = 0.712, respectively; P < .001). CoNV area showed good correlation to clock hours (r = 0.749, P < .001). CoNV depth and volume showed good correlation to BCVA (r = 0.744 and r = 0.722, respectively; P < .001). CoNV anterior limit and vessel density showed no significant correlations (P ≥ .05).

      Conclusions

      Severe CoNV shows greater CoNV posterior limit, thickness, depth%, area, and volume on AS-OCTA compared to mild. CoNV volume and depth strongly correlate to BCVA. AS-OCTA provides novel, quantitative, and noninvasive parameters for assessing CoNV severity.
      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to American Journal of Ophthalmology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Azar D.T.
        Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis).
        Trans Am Ophthalmol Soc. 2006; 104: 264-302
        • Tan D.T.
        • Dart J.K.
        • Holland E.J.
        • Kinoshita S.
        Corneal transplantation.
        Lancet. 2012; 379: 1749-1761
        • Lee P.
        • Wang C.C.
        • Adamis A.P.
        Ocular neovascularization: an epidemiologic review.
        Surv Ophthalmol. 1998; 43: 245-269
        • McNatt L.G.
        • Weimer L.
        • Yanni J.
        • Clark A.F.
        Angiostatic activity of steroids in the chick embryo CAM and rabbit cornea models of neovascularization.
        J Ocul Pharmacol Ther. 1999; 15: 413-423
        • Bucak Y.Y.
        • Erdurmus M.
        • Terzi E.H.
        • Kukner A.
        • Celebi S.
        Inhibitory effects of topical cyclosporine A 0.05% on immune-mediated corneal neovascularization in rabbits.
        Graefes Arch Clin Exp Ophthalmol. 2013; 251: 2555-2561
        • Papathanassiou M.
        • Theodoropoulou S.
        • Analitis A.
        • Tzonou A.
        • Theodossiadis P.G.
        Vascular endothelial growth factor inhibitors for treatment of corneal neovascularization: a meta-analysis.
        Cornea. 2013; 32: 435-444
        • Yu T.
        • Rajendran V.
        • Griffith M.
        • Forrester J.V.
        • Kuffova L.
        High-risk corneal allografts: a therapeutic challenge.
        World J Transplant. 2016; 6: 10-27
        • Inatomi T.
        • Nakamura T.
        • Koizumi N.
        • Sotozono C.
        • Yokoi N.
        • Kinoshita S.
        Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation.
        Am J Ophthalmol. 2006; 141: 267-275
        • Williams K.A.
        • Lowe M.
        • Bartlett C.
        • Kelly T.L.
        • Coster D.J.
        • All C.
        Risk factors for human corneal graft failure within the Australian corneal graft registry.
        Transplantation. 2008; 86: 1720-1724
        • Faraj L.A.
        • Said D.G.
        • Al-Aqaba M.
        • Otri A.M.
        • Dua H.S.
        Clinical evaluation and characterisation of corneal vascularisation.
        Br J Ophthalmol. 2016; 100: 315-322
        • Dastjerdi M.H.
        • Al-Arfaj K.M.
        • Nallasamy N.
        • et al.
        Topical bevacizumab in the treatment of corneal neovascularization: results of a prospective, open-label, noncomparative study.
        Arch Ophthalmol. 2009; 127: 381-389
        • Cursiefen C.
        • Bock F.
        • Horn F.K.
        • et al.
        GS-101 antisense oligonucleotide eye drops inhibit corneal neovascularization: interim results of a randomized phase II trial.
        Ophthalmology. 2009; 116: 1630-1637
        • Cursiefen C.
        • Viaud E.
        • Bock F.
        • et al.
        Aganirsen antisense oligonucleotide eye drops inhibit keratitis-induced corneal neovascularization and reduce need for transplantation: the I-CAN study.
        Ophthalmology. 2014; 121: 1683-1692
        • Bock F.
        • Matthaei M.
        • Reinhard T.
        • et al.
        High-dose subconjunctival cyclosporine A implants do not affect corneal neovascularization after high-risk keratoplasty.
        Ophthalmology. 2014; 121: 1677-1682
        • Spiteri N.
        • Romano V.
        • Zheng Y.
        • et al.
        Corneal angiography for guiding and evaluating fine-needle diathermy treatment of corneal neovascularization.
        Ophthalmology. 2015; 122: 1079-1084
        • Steger B.
        • Romano V.
        • Kaye S.B.
        Corneal indocyanine green angiography to guide medical and surgical management of corneal neovascularization.
        Cornea. 2016; 35: 41-45
        • Stanga P.E.
        • Lim J.I.
        • Hamilton P.
        Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update.
        Ophthalmology. 2003; 110: 15-21
        • Musa F.
        • Muen W.J.
        • Hancock R.
        • Clark D.
        Adverse effects of fluorescein angiography in hypertensive and elderly patients.
        Acta Ophthalmol Scand. 2006; 84: 740-742
        • Ang M.
        • Sim D.A.
        • Keane P.A.
        • et al.
        Optical coherence tomography angiography for anterior segment vasculature imaging.
        Ophthalmology. 2015; 122: 1740-1747
        • Ang M.
        • Cai Y.
        • MacPhee B.
        • et al.
        Optical coherence tomography angiography and indocyanine green angiography for corneal vascularisation.
        Br J Ophthalmol. 2016; 100: 1557-1563
        • Jia Y.
        • Tan O.
        • Tokayer J.
        • et al.
        Split-spectrum amplitude-decorrelation angiography with optical coherence tomography.
        Opt Express. 2012; 20: 4710-4725
        • Nanji A.
        • Redd T.
        • Chamberlain W.
        • et al.
        Application of corneal optical coherence tomography angiography for assessment of vessel depth in corneal neovascularization.
        Cornea. 2020; 39: 598-604
      1. The collaborative corneal transplantation studies (CCTS). Effectiveness of histocompatibility matching in high-risk corneal transplantation. The Collaborative Corneal Transplantation Studies Research Group.
        Arch Ophthalmol. 1992; 110: 1392-1403
        • Trikha S.
        • Parikh S.
        • Osmond C.
        • Anderson D.F.
        • Hossain P.N.
        Long-term outcomes of fine needle diathermy for established corneal neovascularisation.
        Br J Ophthalmol. 2014; 98: 454-458
        • Schulze-Bonsel K.
        • Feltgen N.
        • Burau H.
        • Hansen L.
        • Bach M.
        Visual acuities “hand motion” and “counting fingers” can be quantified with the freiburg visual acuity test.
        Invest Ophthalmol Visual Sci. 2006; 47: 1236-1240
        • Karanjia R.
        • Hwang T.J.
        • Chen A.F.
        • et al.
        Correcting finger counting to snellen acuity.
        Neuroophthalmology. 2016; 40: 219-221
        • Zhang M.
        • Hwang T.S.
        • Campbell J.P.
        • et al.
        Projection-resolved optical coherence tomographic angiography.
        Biomed Opt Express. 2016; 7: 816-828
        • Binotti W.W.
        • Nose R.M.
        • Koseoglu N.D.
        • Dieckmann G.M.
        • Kenyon K.
        • Hamrah P.
        The utility of anterior segment optical coherence tomography angiography for the assessment of limbal stem cell deficiency.
        Ocul Surf. 2020; 20: 30068-30069
        • Schindelin J.
        • Arganda-Carreras I.
        • Frise E.
        • et al.
        Fiji: an open-source platform for biological-image analysis.
        Nat Method. 2012; 9: 676-682
        • Kim A.Y.
        • Chu Z.
        • Shahidzadeh A.
        • Wang R.K.
        • Puliafito C.A.
        • Kashani A.H.
        Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography.
        Invest Ophthalmol Vis Sci. 2016; 57: 362-370
        • Uji A.
        • Balasubramanian S.
        • Lei J.
        • Baghdasaryan E.
        • Al-Sheikh M.
        • Sadda S.R.
        Impact of multiple en face image averaging on quantitative assessment from optical coherence tomography angiography images.
        Ophthalmology. 2017; 124: 944-952
        • Reif R.
        • Qin J.
        • An L.
        • Zhi Z.
        • Dziennis S.
        • Wang R.
        Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system.
        Int J Biomed Imaging. 2012; 2012: 509783
        • Akagi T.
        • Uji A.
        • Huang A.S.
        • et al.
        Conjunctival and intrascleral vasculatures assessed using anterior segment optical coherence tomography angiography in normal eyes.
        Am J Ophthalmol. 2018; 196: 1-9
        • Binotti W.W.
        • Bayraktutar B.
        • Ozmen M.C.
        • Cox S.M.
        • Hamrah P.
        A review of imaging biomarkers of the ocular surface.
        Eye Contact Lens. 2020; 46: S84-S105
        • Ambati B.K.
        • Nozaki M.
        • Singh N.
        • et al.
        Corneal avascularity is due to soluble VEGF receptor-1.
        Nature. 2006; 443: 993-997
        • Cursiefen C.
        Immune privilege and angiogenic privilege of the cornea.
        Chem Immunol Allergy. 2007; 92: 50-57
        • Ferrari G.
        • Giacomini C.
        • Bignami F.
        • et al.
        Angiopoietin 2 expression in the cornea and its control of corneal neovascularisation.
        Br J Ophthalmol. 2016; 100: 1005-1010
        • Moore J.E.
        • McMullen T.C.
        • Campbell I.L.
        • et al.
        The inflammatory milieu associated with conjunctivalized cornea and its alteration with IL-1 RA gene therapy.
        Invest Ophthalmol Vis Sci. 2002; 43: 2905-2915
        • Joussen A.M.
        • Poulaki V.
        • Mitsiades N.
        • et al.
        VEGF-dependent conjunctivalization of the corneal surface.
        Invest Ophthalmol Vis Sci. 2003; 44: 117-123
        • Lim P.
        • Fuchsluger T.A.
        • Jurkunas U.V.
        Limbal stem cell deficiency and corneal neovascularization.
        Semin Ophthalmol. 2009; 24: 139-148
        • Zheng M.
        • Schwarz M.A.
        • Lee S.
        • Kumaraguru U.
        • Rouse B.T.
        Control of stromal keratitis by inhibition of neovascularization.
        Am J Pathol. 2001; 159: 1021-1029
        • Gurung H.R.
        • Carr M.M.
        • Bryant K.
        • Chucair-Elliott A.J.
        • Carr D.J.
        Fibroblast growth factor-2 drives and maintains progressive corneal neovascularization following HSV-1 infection.
        Mucosal Immunol. 2018; 11: 172-185
        • Choudhary A.
        • Hiscott P.
        • Hart C.A.
        • Kaye S.B.
        • Batterbury M.
        • Grierson I.
        Suppression of thrombospondin 1 and 2 production by herpes simplex virus 1 infection in cultured keratocytes.
        Mol Vis. 2005; 11: 163-168
        • Khodadoust A.A.
        • Karnema Y.
        Corneal grafts in the second eye.
        Cornea. 1984; 3: 17-20
        • Hamrah P.M.D.
        • Akhtar J.
        • Djalilian A.R.
        Immunologically high-risk penetrating keratoplasty.
        in: 3rd ed. Cornea: Fundamental, Diagnosis and Management. 1. Mosby Elsevier, St. Louis, MO2011: 1495-1509
        • Armitage W.J.
        • Goodchild C.
        • Griffin M.D.
        • et al.
        High-risk corneal transplantation: recent developments and future possibilities.
        Transplantation. 2019; 103: 2468-2478
        • Hill J.C.
        High risk corneal grafting.
        Br J Ophthalmol. 2002; 86: 945
        • Cai Y.
        • Alio Del Barrio J.L.
        • Wilkins M.R.
        • Ang M.
        Serial optical coherence tomography angiography for corneal vascularization.
        Graefes Arch Clin Exp Ophthalmol. 2017; 255: 135-139
        • Bachmann B.
        • Taylor R.S.
        • Cursiefen C.
        The association between corneal neovascularization and visual acuity: a systematic review.
        Acta Ophthalmol. 2013; 91: 12-19
        • Hos D.
        • Le V.N.H.
        • Hellmich M.
        • et al.
        Risk of corneal graft rejection after high-risk keratoplasty following fine-needle vessel coagulation of corneal neovascularization combined with bevacizumab: a pilot study.
        Transplant Direct. 2019; 5: e452
        • Spaide R.F.
        • Fujimoto J.G.
        • Waheed N.K.
        Image artifacts in optical coherence tomography angiography.
        Retina. 2015; 35: 2163-2180
        • Brunner M.
        • Romano V.
        • Steger B.
        • et al.
        Imaging of corneal neovascularization: optical coherence tomography angiography and fluorescence angiography.
        Invest Ophthalmol Vis Sci. 2018; 59: 1263-1269