Advertisement

Optical Microangiography and Progressive Retinal Nerve Fiber Layer Loss in Primary Open Angle Glaucoma

      PURPOSE

      To evaluate the association between optical microangiography (OMAG) measurements and progressive retinal nerve fiber layer (RNFL) loss in primary open angle glaucoma (POAG).

      DESIGN

      Prospective case series.

      METHODS

      Sixty-four eyes of 40 patients with POAG (108 quadrants) with mild to moderate functional damage were longitudinally studied for at least 2 years and with a minimum of 3 optical coherence tomography examinations. OMAG imaging was performed at the baseline visit. Effect of clinical parameters (age, sex, presence of systemic diseases, central corneal thickness, presence of disc hemorrhage, and mean and fluctuation of intraocular pressure during follow-up), baseline hemifield mean deviation, baseline quadrant optical coherence tomography RNFL and ganglion cell inner plexiform layer thickness), and OMAG (peripapillary and macular perfusion density [PD] and vessel density [VD]) on the rate of RNFL change was evaluated using linear mixed models.

      RESULTS

      Average (±SD) mean deviation, RNFL, and ganglion cell inner plexiform layer thickness of the analyzed quadrants at baseline were −5.5 ± 2.9 dB, 96.5 ± 17.9 µm, and 73.8 ± 8.6 µm, respectively. Peripapillary PD and VD in the quadrant were 44.6% ± 5.9% and 17.5 ± 2.2 mm/mm2, respectively. Rate of quadrant RNFL change was −1.8 ± 0.6 µm/y. Multivariate mixed models showed that lower peripapillary PD (coefficient = 0.08, P = .01) and lower VD (coefficient = 0.21, P = .02) were significantly associated with a faster rate of RNFL loss.

      CONCLUSIONS

      Lower baseline peripapillary PD and VD measured using OMAG were significantly associated with a faster rate of RNFL loss in POAG. OMAG imaging provides useful information about the risk of glaucoma progression and the rate of disease worsening.
      To read this article in full you will need to make a payment

      REFERENCES

        • Weinreb RN
        • Aung T
        • Medeiros FA.
        The pathophysiology and treatment of glaucoma: a review.
        JAMA. 2014; 311: 1901-1911
        • Drance S
        • Anderson DR
        • Schulzer M
        • Collaborative Normal-Tension Glaucoma Study Group
        Risk factors for progression of visual field abnormalities in normal-tension glaucoma.
        Am J Ophthalmol. 2001; 131: 699-708
        • Leske MC
        • Heijl A
        • Hussein M
        • Bengtsson B
        • Hyman L
        • Komaroff E.
        Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial.
        Arch Ophthalmol. 2003; 121: 48-56
        • Zeitz O
        • Galambos P
        • Wagenfeld L
        • et al.
        Glaucoma progression is associated with decreased blood flow velocities in the short posterior ciliary artery.
        Br J Ophthalmol. 2006; 90: 1245-1248
        • Budenz DL
        • Anderson DR
        • Feuer WJ
        • et al.
        Detection and prognostic significance of optic disc hemorrhages during the Ocular Hypertension Treatment Study.
        Ophthalmology. 2006; 113: 2137-2143
        • Bengtsson B
        • Leske MC
        • Yang Z
        • Heijl A
        • Group E.
        Disc hemorrhages and treatment in the early manifest glaucoma trial.
        Ophthalmology. 2008; 115: 2044-2048
        • De Moraes CG
        • Juthani VJ
        • Liebmann JM
        • et al.
        Risk factors for visual field progression in treated glaucoma.
        Arch Ophthalmol. 2011; 129: 562-568
        • Chan TCW
        • Bala C
        • Siu A
        • Wan F
        • White A.
        Risk factors for rapid glaucoma disease progression.
        Am J Ophthalmol. 2017; : 180151-180157
        • Kim JH
        • Rabiolo A
        • Morales E
        • et al.
        Risk factors for fast visual field progression in glaucoma.
        Am J Ophthalmol. 2019; : 207268-207278
        • Founti P
        • Bunce C
        • Khawaja AP
        • et al.
        Risk factors for visual field deterioration in the United Kingdom Glaucoma Treatment Study.
        Ophthalmology. 2020; 127: 1642-1651
        • Kashani AH
        • Chen CL
        • Gahm JK
        • et al.
        Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications.
        Prog Retin Eye Res. 2017; 60: 66-100
        • Jia Y
        • Tan O
        • Tokayer J
        • et al.
        Split-spectrum amplitude-decorrelation angiography with optical coherence tomography.
        Opt Express. 2012; 20: 4710-4725
        • Jia Y
        • Morrison JC
        • Tokayer J
        • et al.
        Quantitative OCT angiography of optic nerve head blood flow.
        Biomed Opt Express. 2012; 3: 3127-3137
        • Jia Y
        • Wei E
        • Wang X
        • et al.
        Optical coherence tomography angiography of optic disc perfusion in glaucoma.
        Ophthalmology. 2014; 121: 1322-1332
        • Wang X
        • Jiang C
        • Ko T
        • et al.
        Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study.
        Graefes Arch Clin Exp Ophthalmol. 2015; 253: 1557-1564
        • Liu L
        • Jia Y
        • Takusagawa HL
        • et al.
        Optical coherence tomography angiography of the peripapillary retina in glaucoma.
        JAMA Ophthalmol. 2015; 133: 1045-1052
        • Yarmohammadi A
        • Zangwill LM
        • Diniz-Filho A
        • et al.
        Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes.
        Invest Ophthalmol Vis Sci. 2016; 57 (OCT451-459)
        • Moghimi S
        • Zangwill LM
        • Penteado RC
        • et al.
        Macular and optic nerve head vessel density and progressive retinal nerve fiber layer loss in glaucoma.
        Ophthalmology. 2018; 125: 1720-1728
        • Shin JW
        • Song MK
        • Kook MS.
        Association between progressive retinal capillary density loss and visual field progression in open-angle glaucoma patients according to disease stage.
        Am J Ophthalmol. 2021; : 226137-226147
        • Wang RK
        • An L
        • Francis P
        • Wilson DJ.
        Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography.
        Opt Lett. 2010; 35: 1467-1469
        • An L
        • Johnstone M
        • Wang RK.
        Optical microangiography provides correlation between microstructure and microvasculature of optic nerve head in human subjects.
        J Biomed Opt. 2012; 17116018
        • Rosenfeld PJ
        • Durbin MK
        • Roisman L
        • et al.
        ZEISS Angioplex™ spectral domain optical coherence tomography angiography: technical aspects.
        Dev Ophthalmol. 2016; 56: 18-29
        • Chen CL
        • Zhang A
        • Bojikian KD
        • et al.
        Peripapillary retinal nerve fiber layer vascular microcirculation in glaucoma using optical coherence tomography-based microangiography.
        Invest Ophthalmol Vis Sci. 2016; 57 (OCT475-485)
        • Shin JW
        • Sung KR
        • Lee JY
        • Kwon J
        • Seong M.
        Optical coherence tomography angiography vessel density mapping at various retinal layers in healthy and normal tension glaucoma eyes.
        Graefes Arch Clin Exp Ophthalmol. 2017; 255: 1193-1202
        • Rao HL
        • Dasari S
        • Riyazuddin M
        • et al.
        Diagnostic ability and structure-function relationship of peripapillary optical microangiography measurements in glaucoma.
        J Glaucoma. 2018; 27: 219-226
        • Rao HL
        • Riyazuddin M
        • Dasari S
        • et al.
        Diagnostic abilities of the optical microangiography parameters of the 3×3 mm and 6×6 mm macular scans in glaucoma.
        J Glaucoma. 2018; 27: 496-503
        • Rao HL
        • Riyazuddin M
        • Dasari S
        • et al.
        Relationship of macular thickness and function to optical microangiography measurements in glaucoma.
        J Glaucoma. 2018; 27: 210-218
        • Begum VU
        • Addepalli UK
        • Yadav RK
        • et al.
        Ganglion cell-inner plexiform layer thickness of high definition optical coherence tomography in perimetric and preperimetric glaucoma.
        Invest Ophthalmol Vis Sci. 2014; 55: 4768-4775
        • Miki A
        • Medeiros FA
        • Weinreb RN
        • et al.
        Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes.
        Ophthalmology. 2014; 121: 1350-1358
        • Diniz-Filho A
        • Abe RY
        • Zangwill LM
        • et al.
        Association between intraocular pressure and rates of retinal nerve fiber layer loss measured by optical coherence tomography.
        Ophthalmology. 2016; 123: 2058-2065
        • Jammal AA
        • Berchuck SI
        • Thompson AC
        • Costa VP
        • Medeiros FA.
        The effect of age on increasing susceptibility to retinal nerve fiber layer loss in glaucoma.
        Invest Ophthalmol Vis Sci. 2020; 61: 8
        • Rao HL
        • Dasari S
        • Riyazuddin M
        • et al.
        Referenced scans improve the repeatability of optical coherence tomography angiography measurements in normal and glaucoma eyes.
        Br J Ophthalmol. 2020; (Published online September 22)https://doi.org/10.1136/bjophthalmol-2020-316480
        • Laird NM
        • Ware JH.
        Random-effects models for longitudinal data.
        Biometrics. 1982; 38: 963-974
        • Laird NM
        • Donnelly C
        • Ware JH.
        Longitudinal studies with continuous responses.
        Stat Methods Med Res. 1992; 1: 225-247
        • Medeiros FA
        • Meira-Freitas D
        • Lisboa R
        • Kuang TM
        • Zangwill LM
        • Weinreb RN.
        Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study.
        Ophthalmology. 2013; 120: 1533-1540
        • Robinson GK.
        That BLUP is a good thing: the estimation of random effects.
        Stat Sci. 1991; : 615-651
        • Beckett LA
        • Tancredi DJ
        • Wilson RS.
        Multivariate longitudinal models for complex change processes.
        Stat Med. 2004; 23: 231-239
        • Li F
        • Lin F
        • Gao K
        • et al.
        Association of foveal avascular zone area with structural and functional progression in glaucoma patients.
        Br J Ophthalmol. 2021; (Published online April 7)https://doi.org/10.1136/bjophthalmol-2020-318065
        • Swaminathan SS
        • Jammal AA
        • Berchuck SI
        • Medeiros FA.
        Rapid initial OCT RNFL thinning is predictive of faster visual field loss during extended follow-up in glaucoma.
        Am J Ophthalmol. 2021; 229: 100-107
        • Gracitelli CP
        • Abe RY
        • Tatham AJ
        • et al.
        Association between progressive retinal nerve fiber layer loss and longitudinal change in quality of life in glaucoma.
        JAMA Ophthalmol. 2015; 133: 384-390
        • Jammal AA
        • Thompson AC
        • Mariottoni EB
        • et al.
        Rates of glaucomatous structural and functional change from a large clinical population: the Duke Glaucoma Registry Study.
        Am J Ophthalmol. 2021; 222: 238-247
        • Jammal AA
        • Thompson AC
        • Mariottoni EB
        • et al.
        Impact of intraocular pressure control on rates of retinal nerve fiber layer loss in a large clinical population.
        Ophthalmology. 2021; 128: 48-57
        • Rao HL
        • Kumar AU
        • Babu JG
        • Kumar A
        • Senthil S
        • Garudadri CS.
        Predictors of normal optic nerve head, retinal nerve fiber layer, and macular parameters measured by spectral domain optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2011; 52: 1103-1110